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The propagation of a two-dimensional weakly nonlinear wavefront into a polytropic
gas in a uniform state and at rest has been studied. Successive positions of the
wavefront and the distribution of amplitude on it are obtained by solving a system of
conservation forms of the equations of weakly nonlinear ray theory (WNLRT) using
a TVB scheme based on the Lax—Friedrichs flux. The predictions of the WNLRT
are found to be qualitatively quite different from the predictions of the linear theory.
The linear wavefronts leading to the formation of caustics are replaced by nonlinear
wavefronts with kinks. By varying the initial shape of the wavefront and the amplitude
distribution on it, the formation and separation of kinks on the wavefront has been
studied.

1. Introduction

The propagation of a point on a pulse in one space dimension, say in the direction
of the x-axis, represents a simple example of plane wavefront propagation. In this
case a wavefront is a plane passing through any point on the pulse and parallel to
the (y, z)-plane. Theory of propagation of such a wavefront, under the high-frequency
approximation whether linear or nonlinear, is quite well known. In the case of latter
when the system is governed by a hyperbolic system of homogeneous quasi-linear
equations with coefficients given as functions of dependent variables, it is given by
the theory of simple waves. Theory of propagation of a curved wavefront is quite
complex. A simple example is a continuous set of wavefronts generated by a curved
piston starting with zero initial velocity and going through small-amplitude motion
in a polytropic gas. If nonlinearity of the governing equations is included, it may
happen that the nonlinear waves from behind may overtake the ones in front of them
leading to the formation of a curved shock.

In this paper, we study the successive positions of a single nonlinear wavefront
(from a succession of wavefronts produced by the piston), which may interact with a
shock and disappear from the flow field. However, there will always be a continuous
set of wavefronts behind the shock and we strongly believe that the geometry of
nonlinear wavefronts and the shock front will be qualitatively similar. In order that
the high-frequency assumption is satisfied, a length scale associated with the piston
motion should be small compared to the principal radii of curvature of the piston.
In the high-frequency approximation, the leading terms give a solution in which
the amplitude and phase are separated. The phase function satisfies a first-order
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nonlinear partial differential equation which is called eikonal equation. The level
surfaces of the phase function give the one-parameter family of curved wavefronts.
In the high-frequency approximation, one considers the propagation of one of these
wavefronts.

The characteristic curves of the eikonal equation are defined as rays, along which
the transport equation is obtained for the amplitude. In the leading-order terms of
linear theory, the ray equations decouple from the transport equation so that the
rays starting from an initially concave wavefront envelope a caustic surface on which
the amplitude tends to infinity, showing that the high-frequency assumption breaks
down.

Experimental results (Sturtevant & Kulkarny 1976) and theoretical investigations
(Whitham 1974; Prasad 1993) have shown that the amplitude of the wavefront has
important effects on its geometry. There are two nonlinear ray theories, both based
on small-amplitude assumption. The first one developed by Choquet-Bruhat (1969)
(and also independently by Parker 1969, 1971) uses linear rays and nonlinearity is
taken into account by stretching the linear rays in the longitudinal direction (i.e. along
the linear rays) due to the dependence of ray velocity on the wave amplitude. Since
the linear rays meet at the points of the caustic, this theory also breaks down much
before the caustic is reached where again as in the linear theory the amplitude tends
to infinity.

The second weakly nonlinear ray theoryt developed by us (Prasad 1975, 1993,
1994), is valid over much larger length and time scales. We abbreviate this theory as
WNLRT. In this theory the wave amplitude correction is incorporated in the eikonal
equation itself and this leads to a system of ray equations coupled to the transport
equation. The theory shows that the nonlinear rays stretch due to the dependence of
the ray velocity on the wave amplitude, as in the work of Choquet-Bruhat, but in
addition the wavefront rotates due to the non-uniform distribution of amplitude on
the wavefront, so that the linear rays deviate from the nonlinear rays. In fact the two
nonlinear effects, namely elongation of the rays (produced by the wave amplitude)
and the deviation of the rays from linear rays (produced by the gradient of the wave
amplitude along the wavefront) are jointly responsible for the resolution of the linear
caustic (an example of a linear caustic is shown in figure 1, Friedlander 1958). If
we take a converging nonlinear wavefront, the caustic plays no role in this solution.
The main issue is not to find the solution near the caustic, because the caustic itself
does not appear during the course of propagation of a curved nonlinear wavefront
(see also the comment at the end of §4), but to compute the wavefronts representing
an entirely new phenomenon. This new phenomenon is the result of the coupling of
the transport equation with the nonlinear ray equations; in this the wave amplitude
remains small but finite and the caustic is replaced by a pair of kinks on the nonlinear

+ We point out here that there are two types of nonlinear wavefronts. Nonlinear wavefronts
arising in a compression pulse, which correspond to M > 1 (see (2.1) in the next section) and
nonlinear wavefronts in an expansion wave which correspond to M < 1. In the first case the
characteristics of the governing equations on the wavefront are real and in the second case they are
complex (Ravindran & Prasad 1985; Prasad 1993). The results on the nature of the singularities on
an expansion nonlinear wavefront are not yet clear. In this paper, we refer to nonlinear wavefronts
only in a compression pulse, i.e. when M > 1. Note that the equations for the propagation of a
shock front are different from those used in this paper for a single nonlinear wavefront. Though
we mention some results on the shocks in earlier papers, it is only for refering to similar results
or approach. Our aim here is to study a single nonlinear wavefront from a one-parameter family
of fronts given by the level surfaces of the phase function. The results for a shock front will be
qualitatively similar and hence the study of nonlinear wavefront is important.
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FIGURE 1. An initially smooth linear wavefront folds with a cusp type of singularity on a caustic.
Rays are straight lines orthogonal to the wavefront.

wavefront (Prasad 1993, 1995). Across a kink, the wave amplitude and the direction
of the normal to it are discontinuous.

The existence of a kink was first shown theoretically by Whitham in 1957 (see
also Whitham 1974) in his theory of shock dynamics. He named a kink on a
shock front a shock-shock. However, it is important to emphasize that Whitham
did not study propagation of a nonlinear wavefront but that of a shock front. The
first experimental results showing kinks on a shock front in a gaseous media were
obtained by Sturtevant & Kulkarny (1976) and even today it is a great challenge to
verify various observed properties of the flow field, containing these kinks, especially
the transition from the shock fronts (or nonlinear wavefronts) containing kinks to
linear acoustic fronts containing cusps. However, our aim here is not to study this
transition from a nonlinear wavefront to a linear wavefront but to study numerically
the solution of the equations of WNLRT containing the kinks. The WNLRT is not
valid in the entire range of parameters required to study this transition.

The formation of singularities on the nonlinear wavefront was also observed by
Ramanathan (1985), while solving the differential forms (i.e. forms which are not
conservation laws) of the nonlinear ray equations. But the differential forms of the
nonlinear ray equations can be used to study the propagation of the wavefront
only till the singularities are formed because up to this time either the solution is
smooth or has discontinuities in higher-order derivatives. But as soon as a singularity,
i.e. a kink, appears on the wavefront, a discontinuity in the amplitude and in the
normal direction comes into play. Kevlahan (1994, 1996) studied the propagation of
a converging shock front in non-uniform flows in terms of a shock manifold equation
together with compatibility conditions for shock strength and its normal derivative
behind the shock, which in a suitable approximation form a closed set of differential
equations similar to the differential forms of the nonlinear ray equations. Again the
solutions could be obtained only till the kinks (shock-shocks) form on the shock
front. For short times after the formation of kinks the solution was extended by
propagating the shock disk and wings as separate shocks. The position of the kink
at a later time was given by the intersection of the two shocks. But this intersection
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method gives a rough estimate of the shape and strength of the shock which may
change considerably over time. Therefore, to study the propagation of kinks on a
shock front for a large time one should use the conservation form of the shock ray
equations as we do in this paper to study the propagation of a kink on a nonlinear
wavefront. Two such sets of physically realistic conservation forms of the nonlinear
ray equations were derived by Morton, Prasad & Ravindran in 1992 (see also Prasad
1993). Their derivation of conservation laws is included in the next section.

Even though we are dealing in this paper only with weakly nonlinear wavefronts, we
would like to make one more comment on shock fronts. This is to answer the question:
Can the WNLRT be shown formally to be an approximation to the propagation of
weak shocks in some limit? For a nonlinear wavefront or a shock front propagating
in a medium in a uniform state, there are two non-dimensional parameters. One is the
ratio of the length scale in the normal direction over which significant change in the
flow variables takes place to the principal radii of curvature of the front. When this
parameter, let us call it €, is small the high-frequency approximation is satisfied. The
second is a non-dimensional measure of the amplitude of the wave, let us call it 0.
The WNLRT is valid when these two parameters are of the same order. In this case,
though a weakly nonlinear wavefront and a weak shock front have qualitatively the
same geometrical features (we have extensive numerical results on the propagation
of a weak shock which will be included in another paper), one cannot obtain the
WNLRT as an approximation of a weak shock ray theory. However, there is a relation
between them as given by Theorem 4.3, p. 74 of Prasad (1993) which briefly means
that the propagation and physical properties of a weak shock front is the mean of
those of a linear wavefront and a weakly nonlinear wavefront. This relation is valid
only locally, i.e. in any small time interval. When the parameter € is small and J /¢ is
also small, both the WNLRT and shock ray theory are expected to give results close
to the linear theory. Our WNLRT is not valid in this domain of parameters, which
is important in order to study the transition from the WNLRT to linear theory.

In this paper we present results of extensive numerical solutions of the system
of conservation laws of WNLRT for quite general initial data by which the initial
shape of the wavefront and the initial value of the Mach number M prescribed on
it can be varied to produce a large number of interesting cases. A total variation
bounded scheme based on the Lax—Friedrichs flux has been used to solve the system
of conservation laws. Thus the present work is a numerical investigation using the
conservation forms of the WNLRT equations to study the detailed history of a
wavefront which is either initially concave or has a periodic shape. Effects of varying
initial curvature as well as the effect of varying initial Mach strength on the formation
and separation of kinks have been studied. Some of the questions we address here
are: (i) How does the separation of the kinks depend on the initial Mach strength?
(i) How does the time at which kinks are formed depend on M and initial curvature?
(iii) How does the maximum Mach strength depend on the initial Mach strength? It
is expected that this numerical investigation will give some understanding of a very
complex phenomenon.

2. Governing equations

The geometry and position of a weakly nonlinear wavefront at a later time depends
on its initial geometry and the initial distribution of intensity on it. Its motion is
governed by a coupled system of ray equations and a transport equation (Prasad 1993,
1994). Consider the propagation of a two-dimensional wavefront in a polytropic gas
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which is initially at rest. Such a medium is isotropic and hence the rays are orthogonal
to the wavefront. Let (x(t), y(t)) be a point which moves along a ray while remaining
on the wavefront and 0(¢t) be the angle which the ray (i.e. the normal to the wavefront)
makes with the x-axis at time t. In two space dimensions the components (ny,n;) of
the unit normal are n; = cos 6,n; = sin 6. The high-frequency approximation implies
that the leading-order terms in excess density, pressure and the fluid velocity on the
wavefront are proportional to an amplitude function w on the wavefront. We first
choose w to be of the dimension of velocity. We non-dimensionalize the length and
time variables using the velocity ay of sound in the medium ahead and a characteristic
length L which we choose to be of the order of the distance over which the wave
propagates. We also introduce a non-dimensional quantity, Mach number M of the
wavefront, by

(ao + 5(7 + w) (y + 1w
= =14+
do 261()

In non-dimensional variables the weakly nonlinear ray equations ((4.1)—(4.5) in Prasad,
1994) reduce to

M (2.1)

% = M cos 0, (2.2)
% = M sin 0, (2.3)
% = —aa—]:[, (2.4)
where d/d/ is an operator defined by
% = (cos 66@]:[ —sin H?j) (2.9)

and d/dt represents the time rate of change along a nonlinear ray. The transport
equation for M coupled to the above equations is
dM M—100
- =~ (2.6)
dt 2 04
Now, we introduce a ray coordinate system (&',¢) where ¢’ = constant represents
the family of rays in the (x, y)-plane and ¢ = constant gives the successive positions of
the wavefront. Let g’ be the metric such that g’d¢’ is an element of non-dimensional
length along the wavefront at time ¢t. Then due to the orthogonality of the rays and
wavefronts, on a given wavefront at time ¢t we have

xo =—g'sin0, ys=gcosl, g?= (xir)z + (ygn)z. (2.7a—)

Also from (2.5) and (2.7) we have
0 , 0

o8 ~ S ar
In the ray coordinate system (&', t), a partial derivative with respect to ¢ represents the
time rate of change along a ray i.e. d/0t = d/dt. The Jacobian of the transformation
from (x,y) to (&,t) coordinates has determinant Mg’. Using subscripts to denote
partial differentiation, differentiating (2.7¢) with respect to ¢ and using (2.2), (2.3) and
(2.7a,b) we get

(2.8)

g = M0y (2.9)
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The transport equation (2.6) transforms to

2 !
Mg_ M, + 0, =0, (2.10)
Elimination of 0y from equations (2.9) and (2.10) gives
2¢’ L,
a1t =0
which gives
(M — 1M Vg’ = f(&), (2.11)

where f is determined from the distribution of the intensity M on the initial wavefront.
When we use equations (2.8) and (2.11) to write the pair of equations (2.4) and (2.6)
with ¢’ and t as independent variables, the coefficients in these equations depend not
only on M but also on &’. To get rid of the dependence of the coefficients on & we

introduce a new variable ¢ = foé’f(f’)dé’ so that

0 0
kR = g(M)ﬁiﬂ’ (2.12)
where
g(M) = (M — 1)2e=2M=D, (2.13)
The equations (2.4) and (2.6) become
0, + ;Mé =0 (2.14a)
and
M, + M2g_19é =0. (2.14b)

Thus the successive positions of the nonlinear wavefront and the distribution of
amplitude on it are finally given by (2.2), (2.3) and (2.14). The characteristic curves
of equations (2.14) in the (&, ¢)-plane are given by

dé M—1\"
— =4 — 2.15
dt  — ( 2g? ) ’ 215
which are real for compression wave, M — 1 > 0, and purely imaginary for an
expansion wave, M — 1 < 0.

It is well known that different conservation forms of the same equation are not

equivalent for a discontinuous solution. The physically realistic conservation form of
equations (2.14) is obtained by equating x; with x,; and y: with y,.. This is

(gsin0), + (M cos0): =0, (2.16a)

(gcos0), —(Msin0); = 0. (2.16b)

The above system of equations (2.16) with (2.13), subject to suitable initial conditions
(to be described in §4), form the basic set of equations for our study of propagation
of a nonlinear wavefront. The system also provides us with a means of correctly
following the movement of kinks on the wavefront.
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3. A finite difference scheme

To solve an initial value problem for (2.16) we use a total variation bounded finite
difference scheme based on the Lax—Friedrichs flux (Shu 1987; Cockburn, Lin & Shu
1989). The application of this scheme to the above system of conservation laws is
based on the decomposition of these equations into characteristic components. The
scheme is then applied to individual characteristic components and the solution is
obtained from summation of the contributions from the characteristic components.

Consider the conservation law

u + (f(u) =0, (3.1)

where u = (uy,...,u,)", such that the Jacobian matrix A(u) = 0f/du has m real
eigenvalues and a complete set of eigenvectors. On the computational grid x; =
JjAx, t, = nAt, we use ! to denote the computed approximation to the exact solution
u(xj,t,) of (3.1). Let Aji1p = (0f /OU)u=u,,,, denote the average Jacobian where

U1 = é((u] +ujy1)/2). We denote the eigenvalues and left and right eigenvectors
of Aji1/2 by )L]H/z, ]’21/2, rﬂ)l/z, p=1,2,...,m, normalized so that
() .. _
lj+1/2 Fivip = Opg- (3.2)
We use the standard notation
A+llj=llj+1—llj, A_llj=llj—llj_1.

A semidiscrete method of lines to (3.1) is a system of ODEs

ou; 1

aftj = —B(Fj+1/2 —F_p), (3.3)
where the numerical flux F ./, is defined by

Fivpp=FWjpirs...,ujtr) (3.4)

for some positive integer k. F ;> is Lipchitz continuous in all its arguments, and
satisfies the consistency condition

F(u,...,u) = f(u). (3.9)
Taking the Euler forward time discretization of (3.3) we get
”’}H =u; — )v(F7+1/2 - F’}A/z)a (3.6)

where 4 = At/Ax is called the CFL number. In the TVB modification procedure

the numerical flux Fj,,, is replaced by a monotone flux (whose choice is defined
later) hj1/2 = h(uyyy ), j+1/2) where ”,+1/z u(xJH/Z, t) are defined suitably subject
to some local projection limiting. To compute h;,;,,, we first find

a? =17, ,-a, (3.7)

0 0 0) ©
where we take a = u; ), u&ll, A_ u( , A+u ), A+u

projection limit in each characteristic ﬁeld
()" = m((u")7, (Au")P, (A-u")P),
(1:1) " = m((u,) ", (As u<°)"> (Al ™),

i+1- We then apply the local
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where m is the minmod function, i.e.
| s.minjg<, |bi],  if sgn(by) = sgn(by) = ... =sgn(b,) = s
m(b1,ba,.... bn) = { 0, otherwise.
We then form
(u712)" = (@) + (i)

0 ~
Wl )P = @)P — (i),
where ¢ is the limiter, 0 < ¢ < 1. Here ¢ = 0 gives the Lax—Friedrichs flux. Taking
a= ”;il /, We return to the component space using

a=> d"" , (3.8)
=1
and find f}+1/2 f(uj+1/2) Next we compute (fj+1/2)(”) from (3.7), and then use any

scalar monotone flux in the pth characteristic field, p = 1,2...,m. Here we have used
the local Lax—Friedrichs flux, defined by

WDy = h((g ), )P)

[(fj+1/2) ® + (f +1/2) ® (“j+1/2)(p){(”;r+1/2)(p) - (“;—&-1/2)@)}] (3-9)

with
(p) _ (P)y 14(p)
Uiy y = max(|4;7], 4754 ]).

We finally get hj, /> by using (3.8), with a = hj),:

hjyi) = Zh1+1/2‘ /20

Now, replacing F i1/, by hjyi); in (3.6) the total variation bounded finite difference
scheme can be written as

uit =l — 2 [H,,, — K] (3.10)

The system of conservation laws (2.16) is solved subject to the initial conditions
given below.

4. Initial conditions and method of solution

We consider an initially concave wavefront moving from left to right (i.e. in the
x-direction) into a gas at rest. Let

x(¢,0) = x0($),  ¥(£,0) = yo(S) (4.1)
denote the initial wavefront, with an initial distribution of amplitude
M(¢,0) = Mo(&). (4.2)
The initial value of 0 is obtained from (4.1) as
0(£,0) = 60(S) (4.3)

and the initial value of g is obtained from (2.13) as
g(¢,0) = g(M(¢,0)). (4.4)
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the exact composite simple wave solution of the equations of nonlinear ray theory. Here
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oK 5°

and lower parts of the initial wavefront and My(6y = 0) = 1.2628. , Solution from the finite

difference scheme. — — —, Exact solution obtained by fitting shocks into a composite simple wave

solution. The two solutions cannot be distinguished in the figure.

The system of conservation laws (2.16) subject to initial conditions (4.2)—(4.4) is solved
using the finite difference scheme described in the previous section. The governing
equations are discretized on a two-dimensional grid along the &-direction and t-
direction in the (&,t)-plane. The effect of step sizes AZ, At has been studied to
optimize them. The numerical procedure for obtaining the successive wavefronts and
the rays is as follows: The solution of (2.16) with (2.13) gives 0(¢&,t), M(&,t) and g(¢&,t)
for all t > 0. Now along a ray given by ¢ = &, by integrating (2.2), (2.3) with initial
values given by (4.1) we can find (x,y) at time t > 0 on the wavefront at & = &, A
Simpsons rule was used for the integration. By this procedure we get both the ray
(joining points (x,y) on &, = const, for various values of t) as well as the wavefront
(joining end points (x,y) of the rays for various values of &, at a given t). In order
to assess the accuracy of the method we have compared our results with an exact
composite simple wave solution described by Prasad (1993).1 Figure 2 shows that the
wavefronts obtained from this scheme cannot be distinguished in the figure with the
exact wavefronts.

Before we start discussing the results from the numerical computation, we would
like to point out that the nonlinear ray theory of Choquet-Bruhat and Parker is valid
only as long as linear and nonlinear rays are close. Thus their theory, like the linear
theory, breaks down before the caustic region (in the linear theory) is reached. Our

1 A simple wave solution, an exact solution of the equations (2.14), can be easily computed. We
define a composite simple wave to be two simple waves of opposite family separated by a constant
state. When the initial wavefront is symmetric about the x-axis, My and 6y can be so prescribed
that on each half of the wavefront one of the Riemann invariants is constant leading to two simple
waves which move apart leaving a constant state in the middle. Shocks (or kinks) can be fitted into
both simple waves with the help of the jump relations derived from (2.16). For details see Prasad
(1993, pp. 111-113).
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WNLRT is based on the geometry of the nonlinear rays and has nothing to do with
that of linear rays. Hence our theory is valid over much larger length scale.

5. Results and discussion

In this section we discuss the results of numerical computation of some cases,
in which we consider the propagation of a nonlinear wavefront with quite general
initial distribution of the amplitude (or intensity). Computations have been carried
out by varying the distribution of amplitude along different initial wavefronts. We
first consider

5.1. Case (i): Propagation of a nonlinear wavefront initially parabolic in shape near
the axis of symmetry and straight wings

Here, the initial wavefront is taken to be a parabola
yP=bx (2<b<8), |y<z 0<z<2 (5.1)

and for |y| > z it is extended on the two sides by the corresponding straight lines.
Thus for |y| = z, 6 is a constant. M, is prescribed on the parabola as a symmetric
function of 6,. We take

My = ae P (5.2)
where the parameter o is a measure of the strength of the initial wave amplitude and

p measures a rate of change of M, along the wavefront. Varying « and  we can vary
the distribution of amplitude on the wavefront.

5.1.1. Effects of varying the initial amplitude distribution

Computations have been carried out for b = 2,3,...,8. For each value of b, the
values of o has been varied between 1.05 and 1.2. We present here the results of only
a few representative cases.

Figure 3(a—d) shows the propagation of a wavefront with initial position as in (5.1)
with b = 8 and z = 2 and with initial strength given by (5.2) for f = 0.01 and
o = 1.05,1.08,1.1,1.2. The nonlinear rays and nonlinear wave-fronts are shown by
solid lines and the corresponding linear wavefronts and the linear rays are shown
by dotted lines. The geometry of linear wavefronts and linear rays in all the parts
of this figure remains unchanged. In figure 3(a) for which My = 1.05 at the centre,
the nonlinear wavefront at t = 1 almost coincides with the linear wavefront, but for
larger times the nonlinear wavefront moves ahead of the linear wavefront, proving
that even small nonlinear effects show up significantly after some time. The linear
rays converge and intersect as they approach the central line, so a caustic necessarily
forms at a finite time t. The nonlinear rays initially converge, but then, except the
central one (being the line of symmetry), deviate significantly from the central line.
The nonlinear wavefronts tend to become plane at the centre and the nonlinear rays
tend to become parallel to the central ray. Thus, the fronts calculated by our WNLRT
do not fold and the rays do not intersect though a pair of kinks with discontinuities
in M and 0 appear on the wavefront, which are shown as dark points. The initially
concave wavefront straightens out to give an ever increasing constant central flat
region, bounded by kinks as was also seen in the composite simple wave solution
(figure 2).

We also observe that although the linear and nonlinear rays coincide initially, as
the linear caustic approaches the nonlinear rays diverge considerably from the linear
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FIGURE 3. Nonlinear wavefronts starting from an initial wavefront in which the central part is the

parabola y? = 8x, for |y| < 2. Amplitude distribution is My = « ¢, Nonlinear wavefronts
and rays. ———, Linear wavefronts and rays. e, The position of the kink on the nonlinear wavefront.
(a) o = 1.05, (b) . = 1.08, (¢) o = 1.10, (d) & = 1.20, = 0.01.

rays. As M, increases at the centre, this divergence from the linear rays takes place
at an earlier time. A closer look at the rays (figure 4) shows that the nonlinear
rays successively converge and diverge similar to the rays reported in figure 6(c) of
Sturtevant & Kulkarny (1976).

The reason for convergence and divergence of rays is seen more clearly by examining
the evolution of the amplitude with time corresponding to figure 3(c) which is shown
in figure 5 (for o = 1.1, f = 0.01). The rays in the central part of the wave-front
converge due to a larger curvature there, thus causing the ray tube area to decrease,
so that M increases in the central part of the wavefront and attains a maximum at
the centre. At t = 4 the steep gradient of M causes the central part of the wavefront
to move faster than the sides, so that the curvature at the centre decreases resulting in
the divergence of the rays. Thus the ray tube area increases and as energy is conserved
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FIGURE 5. Evolution of the Mach number M with time, corresponding to figure 3(c)
when o = 1.1, f = 0.01.

along a ray tube the value of M does not increase at the centre as fast as on two sides
after t = 4. Its shape in the (¢, M)-plane has a local minimum at t = 5 soon after
the focus (the point to which the linear rays converge; linear theory predicts infinite
amplitude at this point). After this M starts increasing at the centre and the nonlinear
rays start converging once again. This process of convergence and divergence repeats
successively and will be seen more clearly in figure 10. From ¢t = 5, M increases
steadily at the centre, and shows a well developed pair of discontinuities in the form
of shocks in the (&, M)-plane. These discontinuities in M and 0 in the (&, t)-plane are
mapped into a pair of kinks on the wavefront itself. Once the kinks have appeared
the intensity of the wavefront in the central flat region does not increase very much
and reaches a maximum amplitude M.

Figure 6(a) shows the plot of M,,,, — 1, where M,,,, is the maximum Mach strength
attained during the course of numerical solution, against initial Mach strength My —1
at the centre. It shows that M,,,, — 1 is a monotonically increasing function of My—1.
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FIGURE 6. (@) Maximum amplification of Mach strength as a function of initial Mach strength
My — 1. (b) Separation of kinks Ay as a function of initial Mach strength My — 1. (c¢) M at focus as a
function of initial Mach strength M, — 1. (d) Critical time of formation of kinks ¢. as a function of
initial Mach strength My— 1 on the axis of symmetry. Initial Mach strength M, means its maximum
value at the centre of symmetry.

The separation of the kinks is also a monotonically increasing function of the initial
Mach strength. Figure 6(b) shows the plot of the kink separation (Ay), at a particular
time, versus the initial Mach strength. Figure 6(c) shows the plot of M — 1 at the
focus, i.e. My, — 1 against the initial Mach strength M, — 1 on the axis of symmetry.
Figure 6(d) shows the dependence of the critical time . when the kinks first appear
on the initial Mach strength. It is observed that as My — 1 increases, kinks are formed
at an earlier time.

In figures 3—6 initial M, is so prescribed that it is maximum at the centre of
symmetry of the wavefront and decreases to each side. Figure 7(a) shows the (x,y)
plot at different times when the initial wavefront is the same as in figure 3(c), but
M, is so prescribed that it is minimum at the centre and maximum on the wings.
The parameters o« = 1.095 and f = —0.01115 are chosen so that the value of M,
although minimum at the centre coincides in the constant region at the two sides
with its value when o« = 1.1 and f = 0.01. Figure 7(b) depicts the comparison of the
evolution of Mach strength with time, in this case with that in figure 5. The solid
lines correspond to this case and the dotted lines represent figure 5. The value of
M. (When M, has a minimum at the centre) is lessat t =1 and t =2 but at t = 10
both tend to almost the same constant state. Thus, even if M is prescribed to be
minimum at the centre it increases immediately due to geometric convergence and
its value for larger times does not vary significantly in the two cases. We therefore



14 P. Prasad and K. Sangeeta
/tzoll '/,2 ,/3 '/4//57/6 t=7 1.30

7 77T A F (b)
8 125} ) =6
[ 7
. 7 - 1~ 8
- L o
L20p 10
o 1
M s i
115fF 1
[ o
[ !
- f II
1.10E il
1.05-1 PRI S N U S TN NN N N S G S S S N
10 -0.10 -0.05 0 0.05 0.10
X <
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number M with time corresponding to (a) is compared with figure 5. — — —, M, is maximum at the
centre, corresponding to the case in figure 3(c). ——, M, is minimum at the centre, corresponding

to the case in (a).

conclude that reducing M, at the centre without changing its value in the constant
region on the two sides produces no noticeable change in the geometry and position
of the nonlinear wavefronts and the nonlinear rays, so that figure 7(a) and figure
3(c) are almost the same. In order to study the effect of varying the gradient of the
amplitude along the wavefront we consider the initial wavefront to be the same as in
figure 3(c), and fixing o = 1.1, we vary § from 0 to 0.2. This leads to an increase in
the gradient of M especially in the central part and the constant value of M, on the
wings decreases considerably. The results have been summarized in figure 8(a—d). It is
observed (not shown in the figure) that as the gradient of the amplitude increases the
deviation of the nonlinear rays from the linear rays becomes more pronounced in the
central part of the wavefront. As the rays diverge at an earlier time the ray tube area
increases which slows down the rate of increase of M. Thus M,,.. and M;,. decrease
as f§ increases as shown in figure 8(a, b). Figure 8(c) shows that as f§ increases the kink
separation Ay increases while the critical time of formation of the kinks t. decreases
as seen in figure 8(d).

5.1.2. Effects of varying the initial curvature

In order to study the effect of varying the curvature of the initial wavefront we
have considered the initial wavefront to be as in (5.1) with b = 4,6,8 and z = 1 and
show the results in figure 9. In all these cases M, is prescribed as in (5.2) with o = 1.1
and f = 0 so that M, is constant along the initial wavefront.

We observe that as the curvature increases, i.e. b decreases, the rays tend to converge
faster, so that the wave amplitude increases rapidly. Thus M, and M;,. increase
with decreasing b as shown in figure 9(a,b). The kink separation Ay also decreases
with increasing curvature as shown in figure 9(c). Figure 9(d) gives the plot of ¢, as a
function of b showing that as curvature increases kinks are formed earlier.
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FIGURE 10 (a—c). For caption see facing page.

5.2. Case (ii): Propagation of a nonlinear wavefront with initially periodic shape
We first take the initial wavefront to be sinusodial in shape, given by the curve

x=0.2—-—0.2Acos(ny/B)

with A = 1 and B = 2. M, is prescribed as in (5.2) with o = 1.08, f = 0.08. Figure
10(a—e) shows the nonlinear rays and the nonlinear wavefronts at successive times.
With increasing time the nonlinear rays tend to become straight lines parallel to the
central line and the nonlinear wavefronts tend to become plane. In this case the
convergence and divergence of the rays is seen very clearly. At the beginning the two
kinks (shown by dark points on the wavefronts) nearest to the x-axis move away
from one another, then they start approaching the kinks on either side, and interact
producing a new pair of kinks and this process continues. The amplitude becomes
almost a constant and the wavefront becomes plane. The variation of amplitude
with time is shown in figure 11. Let M,,,.(t) and M,,;,(¢) represent the maximum and
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p = 0.08. The rays successively converge and diverge. », The position of the kink on the nonlinear
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FIGURE 11. Variation of M,,,(t) and M,,;,(t) with time when the initial wavefront is of sinusoidal
shape. M. (t) — Mypin(t) > 0 as t — oo

minimum Mach strength obtained at a given time ¢, then figure 11 shows the graphs of
M o (t), My (t) and M, (t) — M,,(t) with ¢ for M,,,(0) = 1.08. The functions M,,,.(t)
and M,,;,(t) oscillate but approach a constant value asymptotically. The difference
Mmax(t) - Mmin(t) —0ast— oo

We next consider the initial wavefront to be periodic but of an arbitrary shape
with positive and negative curvature in each period. Figure 12 shows the nonlinear
rays and nonlinear wavefronts corresponding to this case at successive times. As for



18 P. Prasad and K. Sangeeta

(@) t=0-10
5
]
1 —
y o
‘ —
—— l
-5 q
I 1 1 1 1 I 1 I 1 N
0 2 4 6 8 10 12
(b) t=10-20
E-
5 1
hd  J ¥ + ,I
A L P N i
T —
5 T I 1 T 1 )| 1
y 0 ' T | T T T ] |
1
I i i e e e
12 14 16 18 20 22
(c) t=50-60
5 —] )
T
1
¥ f
1
y o ‘ {
-
! 4=
54 56 58 60 62 64 66

FIGURE 12. Geometry and position at different times of a nonlinear wavefront, where the initial
wavefront is a periodic curve with an alternating sequence of positive and negative curvature.
M, = 1.06 along the initial wavefront. The nonlinear wavefronts tend to become plane and the
nonlinear rays tend to become straight lines parallel to the x-axis. o, The position of the kink on
the nonlinear wavefront.

a sinusoidal front in this case too the two kinks nearest to the x-axis first move
away from one another, then they start approaching the kinks on either side and
interact producing a new pair of kinks. Results show that even this front has the
same flattening and self-stabilizing property as the sinusoidal wavefront so that for
larger times the nonlinear rays tend to become straight lines parallel to the x-axis
and the amplitude distribution tends to become uniform.

The properties observed above are generic properties of a weakly nonlinear wave-
front and there is every reason to believe these properties to be true also in the
case of a shock front leading to its corrugational stability. First, we notice that an
isolated shock and hence a kink, once formed, persist for all time (see Prasad, 1993,
§ 1.5). Further, we notice from the two examples that two kinks on an initially periodic
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wavefront interact and produce another pair of kinks. Therefore, there is every reason
to believe that kinks persist for all time even if M, (t) — M,;,(t) — 0 (figure 13).
The property that a periodic wavefront tends to become plane is due to dissipation
of the kinetic energy associated with the wavefront — the source of this dissipation
being the kinks, which persist for all time. Some work on this is in progress which we
shall report later. A mathematical proof of the smoothing or corrugational stability
of a nonlinear wavefront comes from the classical work of Glimm & Lax (1970) on
the asymptotic form of the periodic solutions of a pair of conservation laws of which
(2.16) is a particular case. According to this result if the initial data are periodic, the
oscillations in the solution decays like 1/t and the solution itself approaches a func-
tion which is the mean value of the solution per period. Thus, M. (t) — M,i(t) — 0
as t — oo.

6. Conclusion

The numerical results presented in this paper demonstrate that the nonlinear
effects in gas dynamics not only limit the maximum amplitude of a wavefront in the
caustic region of the linear thoery but also bring about a considerable change in the
wavefront geometry at and beyond the focus. The geometry, position and amplitude of
a nonlinear wavefront depends on the initial position of the wavefront, its amplitude
and the gradient of the amplitude on it. Numerical experiments with different initial
shapes and different values of the initial amplitude distribution reveal that in no
case does the amplitude increase so much that the small-amplitude assumption is
violated. This is in contrast to the linear theory, where at the focus infinite amplitude
is predicted by its leading-order terms and very large amplitude is predicted when the
next order terms are included (Buchal & Keller 1962).

The authors sincerely thank Professor K. W. Morton and Dr Veerappa Gowda for
valuable discussions.
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